
... , -.
An Empirical Evaluation of Automated Theorem Provers

in Software Certification

Ewen Denneyt, Bemd Fisches, Johann SchumannJ
tQSS / jRIACS, NASA Ames Research Center,

{edenney,fisch,schumann}@email.arc.nasa.gov

Abstract
We describe. a system for the automated certification of safety properties of NASA

software. The system uses Hoare-style program verification technology to generate proof
obligations which are then processed by an automated first-order theorem prover (ATP).
We discuss the unique requirements this application places on the ATPs, focusing on au-
tomation, proof checking, and usability. For full automation, however, the obligations must
be aggressively preprocessed and simplified, and we demonstrate how the individual sim-
plification stages, which are implemented by rewriting, influence the ability of the ATPs
to solve the proof tasks. Our results are based on 13 certification experiments that lead to
more than 25,000 proof tasks which have each been attempted by Vampire, Spass, e-setheo,
and Otter. The proofs found by Otter have been proof-checked by IVY.

1 Introduction

Software certification aims to show that the software in question achieves a certain level of
quality, safety, or security. Its result is a cemjicate, i.e., independently checkable evidence of
the properties claimed. Certification approaches vary widely, ranging from code reviews to full
formal verification, but the highest degree of confidence is achieved with approaches that are
b a d on formai me&& and use iogic auci GiwieEi pici+ig t~ CO~;SZ~GC~

We have developed a certification approach which uses Hoare-style techniques to demon-
strate the safety of aerospace software which has been automatically generated from high-level
specifications. Our core idea is to extend the code generator so that it simultaneously generates
code and the detailed annotations, e.g., loop invariants, that enable a safety proof. A verification
condition generator (VCG) processes the annotated code and produces a set of safety obliga-
tions, which are provable if and only if the code is safe. An automated theorem prover (ATP)
then discharges these obligations and the proofs, which can be verified by an independent proof
checker, serve as certificates. This approach largely decouples code generation and certification
and is thus more scalable than, e.g., verifying the generator or generating code and complete
safety proofs in parallel.

In this paper, we evaluate the extent to which the current generation of ATPs is capable
of supporting the formal certification of software. In our view, this covers three main aspects.
First, full automation is crucial since the practicability of our approach hinges on it. Second,

- the ability to generate proof objects and to carry out proof checking is essential to create explicit
certificates. Third, there are a range of traceability issues which have a significant bearing on
the ability of an ATP to create meaningful certificates.

~dficiX-~s.

1

*
?

Program certification is a demanding application for ATPs because the number of proof

main. However, in our case there are several factors which make a successful ATP application
possible. First, we certify separate aspects of safety and not full functional correctness. This
separation of concerns allows us to show non-trivial properties like matrix symmetry but results
in more tractable obligations. Second, the extensions of the code generator are specific to the
safety properties to be certified and to the algorithms used in the generated programs. This
allows us to fine-tune the annotations which, in turn, also results in more tractable obligations.
Third, we aggressively simplify the obligations before they are handed over to the prover, taking
advantage of domain-specific knowledge.

In this paper, we evaluate three hypotheses. The first hypothesis is that the current generation
of high-performance ATPs is-in principle-already powerful enough for practical application
in program certification. The second hypothesis is that ATPs can still not be considered entirely
as black boxes but require careful integration with the application at hand; in particular, the
application must carefully preprocess the proof tasks to make them more tractable. The final
hypothesis is that proof checkers for first-order logic have not yet reached the same level of ma-
turity as the ATPs themselves, despite the fact that proof checking is, prima facie, conceptually
simpler than proof finding.

We have tested our hypotheses by running five high-performance provers on seven different
versions of the safety obligations resulting from certifying five different safety policies for four
different programs-in total more than 25,000 obligations per prover. In Section 2 we give
an overview of the system architecture, describing the safety policies as well as the generation
and preprocessing of the proof tasks. In Section 3, we outline the experimental set-up used to
evaluate the theorem provers over a range of different preprocessing levels. The detailed results
are given in Section 4; they confirm our first two hypotheses: the provers are generally able to
solve the emerging obligations but only after substantial preprocessing. However, for almost
all programs and all polices, a few hard obligations remain, and a successful certification (i.e.,
proof of all obligations) can be achieved only after even more tuning. Section 5 then discusses
the proof checking experiments, and Section 6 looks at traceability issues. Finally, Section 7
draws some conclusions.

Conceptually, this paper continues the work described in [33, 341 but the actual implemen-
tation of the certification system has been completely revised and substantially extended. We
have expanded the range of both algorithms and safety properties which can be certified; in
particular, our approach is now fully integrated with the AUTOFILTER system [35] as well as
with the AUTOBAYES system [l I] and the certification process is now completely automated.
We have also implemented a new generic VCG which can be customized for a given safety pol-
icy and which directly processes the internal code representation instead of Modula-2 as in the
previous version. All these improvements and extensions to the underlying framework result in
a substantially larger experimental basis than reported before. A shorter version of this paper
appears as [5].
Related Work Our approach is related to proof-carrying code (PCC) [21]. PCC works on
the machine-code level instead of the source-code level (as we do) and concentrates on very
simple safety policies (mainly array-bounds safety) which leads to comparatively simple proof
obligations. PCC also spawned an entire cottage industry of proof checkers, e.g., [I]; however,
these use various higher-order logics and so are not applicable for our purposes.

KIV [24, 251 is an interactive verification environment which can use ATPs but heavily

----- ~ obligations is po>i_ally very large- and__prwzgr. venGi&kc) is generally a. hard problem do-

2

Figure 1: Certification system architecture

relies on term rewriting and user guidance. Sunrise [14] is a M y automatic system but uses
custom-designed tactics in HOL to discharge the obligations. Houdini [9] is a similar system.
There the generated proof obligations are discharged by ESC/Java but again, this relies on a
significant amount of user interaction.

2 System Architecture

Our certification tool is built as an extension to the AUTOBAYES and AUTOFILTER program
synthesis systems. AUTOBAYES works in the statistical data analysis domain and generates pa-
rameter learning programs while AUTOFILTER generates state estimation code based on vari-
ants of the K h a n filter algorithm. Figure 1 gives an overview of the overall system architec-
ture. Both underlying synthesis systems take as input a high-level problem specification and
generate code that impiements the specification. This process is based on hc: r c p i c d applica-
tion of schemas. Schemas are generic algorithms which are instantiated in a problem-specific
way after their applicability conditions have been proven to hold for the given problem spec-
ification. The synthesizers first generate Ctt-style intermediate code which is then compiled
down into any of the different supported languages and runtime environments.

For the certification tool, we extended the schemas such that the synthesis systems generate
code that is marked up with annotations relevant to the chosen safety policy. These annotations
encode local safety information which is then propagated throughout the program. In the next
stage, the analysis is carried out by a VCG applying rules from the safety policy to generate
verification conditions which are then simplified by a rewrite system. Finally, certz9cation is
achieved by sending these simplified verification conditions to an automated theorem prover
and checking the resulting proofs.

The individual components are described in some detail in the subsequent sections. We
distinguish trusted and untntsted components, shown in red (dark grey) and blue (light grey),
respectively. In particular, the correctness b f our certification system does not depend on the
correctness of the two largest subsystems: the synthesizer, and the theorem prover; instead, we

3

safety policy
array

safety condition domaintheory
‘da[i] E c . Ul, 5 2 5 Uhi arithmetic

propositional
propositional

init
in-use

‘d read-var x E c . init(x)
V input-var x E c . use (x)

Table 1: Safety conditions for different policies

symm
norm

need only trust the safety policy, the VCG, and the proof checker.
This lets us adopt an approach to certification which we call product-oriented certijcation,

in contrast to process-oriented approaches, which rely on the qualification (Le., verification) of
the tools being used. A product-oriented approach is more feasible when using complex tools
like theorem provers and hence is more scalable.

Vmatrix-exp m E c . Vz, j . m[i, j] = m[j, i]
‘d vectorv E c .

matrices
arithmetic, summations size(v) v[i] = 1

2.1 Safety Properties and Safety Policies

The certification tool automatically certifies that a program satisfies a given safety property, i.e.,
an operational characterization that the program “does not go wrong”. It uses a corresponding
safety policy, i.e., a set of Hoare-style proof rules and auxiliary definitions which are specifically
designed to show that programs satisfy the safety property of interest. The distinction between
safety properties and policies is explorcd ifi [3] .

We further distinguish between language-specijic and domain-specijic properties and poli-
cies. Language-specific properties can be expressed in the constructs of the underlying pro-
gramming language itself (e.g., array accesses), and are sensible for any given program written
in the language. Domain-specific properties typically relate to high-level concepts outside the
language (e.g., matrix multiplication), and must thus be expressed in terms of program frag-
ments. Since these properties are specific to a particular application domain, the corresponding
policies are not applicable to all programs.

We have defined five different safety properties and implemented the corresponding safety
policies. Array-bounds safety (array) requires each access to an array element to be within the
specified upper and lower bounds of the array. Variable initialization-before-use (init) ensures
that each variable or individual array element has been assigned a defined value before it is used.
Both are typical examples of language-specific properties. Matrix symmetry (syrnrn) requires
certain two-dimensional arrays to be symmetric. Sensor input usage (in-use) is a variation of
the general init-property which guarantees that each sensor reading passed as an input to the
Kalman filter algorithm is actually used during the computation of the output estimate. These
two examples are specific to the Kalman filter domain. The final example (n o m) ensures that
certain one-dimensional arrays represent normalized vectors, i.e., that their contents add up to
one; it is specific to the data analysis domain.

The safety policies can be expressed in terms of two families of definitions. For each com-
mand the policy defines a safety condition and a substitution, which captures how the command
changes the environmental information relevant to the safety policy. The rules of the safety
policy can then be derived systematically from the standard Hoare rules of the underlying pro-
gramming language [3].

From our perspective, the safety conditions are the most interesting aspect since they have

4

,

enviropental
information

...
A

. . .

V x , y . 0 5 x 5 5 A 0 5 y 5 5 +- sel(idinit ,x, y) = init
Q x , y . 0 5 x 5 5 A 0 5 y 5 5 + sel(tmpl-znit,x, y) = init
V x , j - 0 5 x 5 i - 1 A 0 5 y 5 5 =3 sel(tmp2_init,x, y) = init 1

(y < j A x = + sel(tmp2init , x , y) = init))) J
... O h i < 5 A O 5 j < 5 } index bounds
e- (seZ(id-init, i , j) = znit A seZ(tmplinit, i, j) = init) } safety condition

Figure 2: Structure of a safety obligation

the greatest bearing on the form of the proof obligations. Table 1 summarizes the different
conditions and the domain theories needed to reason about them. Both variable initialization
and usage as well as array bounds certification are logically simple and rely just on proposi-
tional and simple arithmetic reasoning, respectively, but can require a lot of information to be
propagated throughout the program. The symmetry policy needs reasoning about matrix expres-
sions expressed as a first-order quantification over all matrix entries. The vector norm policy
is formalized in terms of the summation over entries in a one-dimensional array, and involves
symbolic reasoning over finite sums.

2.2 Generating Proof Obligations

For certification purposes, the synthesis system annofufes the code with mark-up information
relevant to the selected safety policy. These annotations are part of the schema and thus are
instantiated in parallel with the code fragments. The annotations contain local information in the
form of logical pre- and postconditions and loop invariants, which is then propagated through
the code. The fully annotated code is then processed by the VCG, which applies the rules of the
safety policy to the annotated code in order to generate the safety conditions. As usual, the VCG
works backwards through the code. At each line, the safety conditions are generated ad the
safety substitutions are applied. The VCG has been designed to be “correct-by-inspection”, i.e.,
to be sufficiently simple that it is straightforward to see that it correctly implements the rules
of the logic. Hence, the VCG does not carry out any simplifications; in particular, it does not
actually apply the substitutions but maintains explicit formal substitution terms. Consequently,
the generated verification conditions (VCs) tend to be large and must be simplified separately;
the more manageable simplified verification conditions (SVCs) which result are then processed
by a first order theorem prover. The resulting proofs can be sent to a proof checker, e.g., Ivy
[l a

The structure of a typical safety obligation (after substitution reduction and simplification)
is given in Fi-we 2. It corresponds to the initialization safety of an assignment within a nested
loop. Most of the hypotheses consist of annotations which have been propagated through the
code and are irrelevant to the line at hand. The proof obligation also contains the local loop
invariants together with bounds on f or-loops. Finally, the conclusion is generated from the
safety conditions for the statement given by the corresponding safety policy.

5

2.3 Processing Proof Obligations and Connecting the Prover

The simplified safev-&igations are exported as a number of individual proof Obligations using
TPTP first order logic syntax. A small script then adds the axioms of the domain theory, before
the completed proof task is processed by the theorem prover. Parts of the domain theory are
generated dynamically in order to facilitate reasoning with (small) integers. The domain theory
is described in more detail in Section 3.3.

The connection to a theorem prover is straightforward. For provers that do not accept the
TPTP syntax, the appropriate TPTP2X-converter is used before invoking the theorem prover.
In the experiments, run-time measurement and prover control (e.g., aborting provers) were per-
formed with the same TPTP tools as in the CASC competition [30].

3 Experimental Setup

3.1 Program Corpus

As a basis for the certification experiments we generated annotated programs from four dif-
ferent specifications which were written prior to and independently of the experiments. The
size of the generated programs ranges from 43 1 to 1157 lines of commented C-code, includ-
ing the annotations. Table 2 in Section 4 gives a more detailed breakdown. The first two
examples are AUTOFILTER specifications. dsl is taken from the attitude control system of
NASA's Deep Space One mission [35]. iss specifies a component in a simulation environ-
iiient for the Space Shuttle docking procedure at the International Space Station. In boih cases,
the generated code is based on Kalman filter algorithms, which make extensive use of matrix
operations. The other two examples are AUTOBAYES specifications which are part of a more
comprehensive analysis of planetary nebula images taken by the Hubble Space Telescope (see
[7, 101 for more details). segm describes an image segmentation problem for which an iter-
ative (numerical) statistical clustering algorithm is synthesized. Finally, gauss fits an image
against a two-dimensional Gaussian curve. This requires a multivariate optimization which is
implemented by the Nelder-Mead simplex method. The code generated for these two examples
has a substantially different structure from the state estimation examples. First, the numerical
optimization code contains many deeply nested loops. Also, some of the loops are convergence
loops which have no fixed upper bounds but are executed until a dynamically calculated error
value gets small enough. In contrast, in the Kalman filter code, all loops are executed a fixed
@e., known at synthesis time) number of times. Second, the numerical optimization code ac-
cesses all arrays element by element and contains no operations on entire matrices (e.g., matrix
multiplication). The example specifications and all generated proof obligations can be found at
http://ase.arc.nasa.gov/autobayes/ijcar.

3.2 Simplification

Proof task simplification is an important and integral part of our overall architecture. However,
as observed before [12, 8, 281, simplifications-even on the purely propositional level-can
have a significant impact on the performance of a theorem prover. In order to evaluate this
impact, we used six different rewrite-based simplifiers to generate multiple versions of the safety
obligations. We focus on rewrite-based simplifications rather than decision procedures because

I

6

I

rewriting is easier to certify: each individual rewrite step T S can be traced and checked

Baseline The baseline for all simplifications is given by the rewrite system 70 which eliminates
the extra-logical constructs (including explicit formal substitutions) which the VCG employs
during the construction of the safety obligations. Our original intention was to axiomatize these
constructs in first-order logic and then (ab-) we the provers for this elimination step, but that
turned out to be infeasible. The main problem is that the combination with equality reasoning
produces tremendous search spaces.
Propositional Structure The first two proper simplification levels only work on the proposi-
tional structure of the obligations. TV,* splits the few but large obligations generated by the
VCG into a large number of smaller obligations. It consists of two rewrite rules Vx - P A Q -
(Vx - P) A (Vx - Q) and P + (Q A R) -+ (P +- Q) A (P +- R) which distribute universal
quantification and implication, respectively, over conjunction. Each of the resulting conjuncts
is then treated as an independent proof task. T,, simplifies the propositional structure of the
obligations more aggressively. It uses the rewrite rules

.independently, e.g., by using an ATP to prove that S +l' holds. - - ._ _ .

7 true -false 7 false cvf true
t rueAPcv fP false A P -false
trueVP-true false V P cvf P
P+true--ttrue P + f a l s e - l P
t r u e + P - P false + P - true
P * P -2 tnlP (P A &) + P -+ true
P + (Q ==+ R) - (P A Q) + R Vx . true - true

in addition to the two rules in Tv,~ . The rules have been chosen so that they preserve the overall
structure of the obligations as far as possible; in particular, conjunction and disjunction are not
distributed over each other and implications are not eliminated. Their impact on the clausifier
should thus be minimal.
Ground Arithmetic This simplification level additionally handles common extensions of plain
first-order logic, i.e., equality, orders, and arirhmeuc. Tne rewiiie systeiii Td C O E + ~ S p i e s fer
the reflexivity of equality and partial orders as well as the irreflexivity of strict orders, although
the latter rules are not invoked on the example obligations. In addition, it normalizes orders into
5 and > using the (obvious) rules

x>y-y<x 'x>y-x<y
x<ycvfy>x 'x<y-x>y

The choice of the specific orders is arbitrary; choosing for example < instead of > makes no
difference. However, a further normalization by elimination of either the partial or the strict
order (e.g., using a rule x < y - x < y V z = y) leads to a substantial increase in the formula
size and thus proves to be counter-productive.

Tmd also contains rules to evaluate ground integer operations (i.e., addition, subtraction,
and multiplication), equalities, and partial and strict orders. Moreover, it converts addition and
subtraction with one small integer argument @e., n 5 5) into Pressburger notation, using rules
of the form n+l - succ(n) and n-1 -+ pred(n). Formany safety policies (e.g., init), terms of
this form are introduced by relativized bounded quantifiers (e.g., Vx. 0 5 x 5 n - 1 + P (x))

7

and contain the only occurrences of arithmetic operators. A final group of rules handles the
interaction between succ and pred, as well as with the orders.

succ(pred(z)) rvf x
succ(z) 5 y -4 x < y
x 5 pred(y) rvf x < y

pred(succ(z)) - z
x > pred(y) - x 2 y
succ(z) > y rvf x 2 y

Language-Specific Simplification The next level handles constructs which are specific to the
program verification domain, in particular array-expressions and conditional expressions, en-
coding the necessary parts of the language semantics. The rewrite system xmay adds rewrite
formulations of McCarthy’s array axioms [17], i.e., seZ(upd(a, i, v) , j) -4 i = j ? : seZ(a,j)
for one-dimensional arrays and similar forms for higher-dimensional arrays. Some safety poli-
cies are formulated using arrays of a given dimensionality which are uniformly initialized with a
specific value. These are represented by a constarray-term, for which similar rules are required,
e.g., seZ(constarray(v, d) , i) -4 v.

array, lead to nested conditionals which in turn lead to an exponential blow-up during the sub-
sequent language normalization step. Tmay thus also contains two rules true ? IC : y - x and
false ? x : y -4 y to evaluate conditionals.

In order to properly assess the effect of these domain-specific simplifications, we also ex-
perimented with a rewrite system Tmaay*, which applies the two sel-rules in isolation.
Policy-Specific Simplification The most aggressive simplification level Tp,,cy uses a number of
rules which are fine-tuned to handle situations that frequently arise with specific safety policies.
The init-policy requires a rule

Npqtpd ~ e l / ~ i p d - W ~ ~ , J+& f r c ~ ~ S ~ ~ X Z Z X S ~f b&1,5+iA Z ~ ~ ~ ~ X I C Z Z Kj tk S m i C

Vx.0 5 x 5 n +- (x # 0 A ... Ax # n =+ P) - true

which is derived from the finite induction axiom to handle the result of simplifying nested
sellupd-terms. For in-use, we need a single rule def = use - false, which follows from the fact
that the two tokens def and use used by the policy are distinct. For symrn, we make use of a
lemma about the symmetry of specific matrix expressions: A + BCB* is already symmetric
if (but not only if) the two matrices A and C are symmetric, regardless of the symmetry of B.
The rewrite rule

sel(A + BCBT7 i , j) = seZ(A + BCBT7j, i)
“vf seZ(A,i,j) = seZ(A,j,i) AseZ(C,i,j) = seZ(C,j,i)

formulates this lemma in an element-wise fashion.

are added to handle the inductive nature of finite sums:
For the nom-policy, the rules become a lot more specialized and complicated. TWO rules

-+ P A x = Cpred(n) 2=0 Q(i) + Cyzo Q(i) = xy=o Q(i)

The first rule directly implements the base case of the induction; the second rule, which im-
plements the step case, is more complicated. It requires alpha-conversion for the summations

8

as well as higher-order matching for the body expressions, both of which are, however, under
.explicit control of this specific rewrite nile and not the general rewrite engine, and are imple- ,
mented directly as Prolog predicates. Note that the right hand side can easily be simplified into
true by the application of further rules. A similar rule is required in a very specific situation to
substitute an equality into a summation:

P A (Vi. 0 5 i 5 n =+ x = seZ(f , i)) + C:=oseZ(f,i) = 1
“v) P A (Vz -0 5 i 2 n + z = seZ(f,i)) + xT=ox = 1

The above rules capture the central steps of some of the proofs for the norm-policy and mirror
the fact that these are essentially higher-order inferences.

Another set of rewrite rules handles all Occurrences of the random number generator by
asserting that the number is within its given range, Le., Z 5 rand(Z, u) 5 u.

Normalization The final preprocessing step transforms the obligations into pure first-order
logic. It eliminates conditional expressions which occur as top-level arguments of predicate
symbols, using rules of t h e f o r m P ? T : F = R “v) (P T = R) A (’P + F = R) and
similarly for partial and strict orders. A number of congruence rules move nested occurrences of
conditional expressions into the required positions. Finite sums, which only occur in obligations
for the nom-policy, are represented with a de Bruijn-style variable-free notation.
Control The simplifications are performed by a small but reasonably efficient rewrite engine
implemented in Prolog (cf. Table 2 for runtime information). This engine does not support full
AC-rewriting but flattens and orders the arguments of AC-operators. The rewrite rules, which
are implemented as Prolog clauses, then do their own list matching but can take the list ordering
into account. The rules within each system are applied exhaustively. However, the two most
aggressive simplification levels 7, and T,,,, are followed by a structural “clean-up” phase.
This consists of the language normalization followed by the propositional simplifications T,,
and the finite induction rule. Similarly, T-,,. is followed by the language normalization and then
by T v , ~ to split the obligations.

3.3 DomainTheory

Each safety obligation is supplied with a first-order domain theory. In our case, the domain
theory consists of a fixed part which contains 44 axioms, and a set of axioms which is gener-
ated dynamically for each proof task. The static axioms define the usual properties of equal-
ity and the order relations, as well as axioms for Pressburger arithmetic and for the domain-
specific operators (e.g., m y accesses and matrix operations). This part axiomatizes 22 dif-
ferent predicate and function symbols. The dynamic axioms are added because most theorem
provers cannot calculate with integers, and to avoid the generation of large terms of the form
succ(. . . succ(0). - .). For all integer literals n, m in the proof task, we generate the coriespond-
ing axioms of the form m > n. For small integers @e., n 5 5), we also generate axioms
for explicit successor-terms, i.e., n = succ”(0) and add a finite induction schema of the form
Vx - 0 5 x 2 n =+ (x = 0 V x = 1 V . . . V x = n). In our application domain, these axioms are
needed for some of the matrix operations; thus n can be limited to the statically known maximal
size of the matrices.

9

3.4 Theorem Provers

For the experiments, we selected several high-performance theorem provers for untyped first-
order formulas with equality. Most of the provers participated in the CASC-19 [29] prover
competition in the FOL category. We used two versions of e-setheo [20] which were both
derived from the CASC version. For e-setheo-csp03F, Flotter V2.1 131, 321 was used to con-
vert the formulas into a set of clauses instead of the clausifier provided by the TPTP toolset
[30]. e-setheo-new is a recent development version with several improvements over the original
e-setheo-csp03 version. Both versions of Vampire [27] have been taken directly “out of the
box”-they are the versions which were used at CASC-19. Spass 2.1 was obtained from the
developer’s website [31]. For comparison purposes, we also used Otter V3.2 1191, which has
been essentially unchanged since 1996.

In the experiments, we used the default parameter settings and none of the special features of
the provers. The only exception is Otter, where the developer provided an alternative parameter
setting since the defaults proved unsuitable. For each proof obligation, we limited the run-time
to 60 seconds: the CPU time actually used was measured with the TPTP-tnnls on a 2 4GHz dnal
processor standard PC with 4GB memory.

-

4 Empirical Results

4.1 Generating and Simplifying Obligations

Table 2 summarizes the results of generating the different versions of the safety obligations. For
each of the example specifications, it lists the size of the generated programs (without annota-
tions), the applicable safety policies, the size of the generated annotations (before propagation),
and then, for each simplifier, the elapsed time T and the number N of generated obligations.
The elapsed times include synthesis of the programs as well as generation, simplification, and
file output of the safety obligations; synthesis alone accounts for approximately 90% of the
times listed under the array safety policy. In general, the times for generating and simplifying
the obligations are moderate compared to both generating the programs and discharging the
obligations. All times are CPU times and have been measured in seconds using the Unix time
command.

Almost all of the generated obligations are valid, i.e., the generated programs are safe. The
only exception is the in-use-policy which produces one invalid obligation for each of the d s l
and iss examples. This is a consequence of the original specifications which do not use all
elements of the initial state vectors. The invalidity is confined to a single conjunct in one of
the original obligations, and since none of the rewrite systems contains a distributive law, the
number of invalid obligations does not change with simplification.

The first four simplification levels show the expected results. The baseline T@ yields rela-
tively few but large obligations which are then split up by Tv,+ into a much larger (on average
more than an order of magnitude) number of smaller obligations. The next two levels then elim-
inate a large fraction of the obligations. Here, the propositional simplifier Tmp alone already
discharges between 50% and 90% of the obligations while the additional effect of evaluating
ground arithmetic (7;VJ is much smaller and generally well below 25%. The only significant
difference occurs for the array-policy where more than 80% (and in the case of ds 1 all) of the
remaining obligations are reduced to true. This is a consequence of the large number of obliga-

10

a .- . .

171
195
20
118

dsl I 4311arrq

6.5 56 12.1 464 7.8 172 7.7 130 7.6 121 12.8 470 7.6 121
3.8 54 5.0 155 3.8 41 3.6 30 3.8 32 5.2 157 3.6 14
21.0 69 24.9 687 21.2 98 21.0 20 20.9 20 24.3 687 21.3 20
49.8 85 65.5 1417 54.1 395 53.2 324 53.9 316 66.2 1434 54.3 316

I linit
in-ust

inif
in-ust

I I linir

Hi-= gauss 1039 array
I I init

Table 2: Generation of safety obligations

tions which have the form l n 5 n + P for an integer constant n representing the (lower or
upper) bound of an array. The effect of the domain-specific simplifications is at first glance less
clear. Using the array-rules (T-,,*) only generally leads to an increase over Ty,+ in the number
of obligations; this even surpasses an order of ma,onitude for the sym-policy. However, in
combination with the other simplifications (Tm,,), most of these obligations can be discharged
again, and we geiieilly aid iq wi't less O~!&&OT?S emA behe; again, the symm-policy is the
only exception. The effect of the final policy-specific simplifications is, as should be expected,
highly dependent on the policy. For in-use and norm a further reduction is achieved, while the
rules for irrit and symm only reduce the size of the obligations.

4.2 Running the Theorem Provers

Table 3 summarizes the results obtained from running the theorem provers on all proof obli-
gations (except for the invalid obhgahons from rhe in-use-ycjkyj, pic@ by &%rent
simplification levels. Each line in the table corresponds to the proof tasks originating fiom a
specific safety policy (array, init, in-use, symm, and norm). Then, for each prover, the percent-
age of solved proof obligations and the total CPU time are given. Note that T , also includes
the actual CPU times for failed proof attempts.

For the fully simplified version (T,,,,), all provers are able to find proofs for all tasks orig-
inating from at least one safety policy; e-setheo-csp03F can even discharge all the emerging
safety obligations This result is central for our application since it shows that current ATPs can
in fact be applied to certifj the safety of synthesized code, confirming our first hypothesis.

For the unsimplified safety obligations, however, the picture is quite Merent. Here, the
provers can only solve a relatively small fraction of the tasks and leave an unacceptably large
number of obligations to the user. The only exception is the a~~~y-pol icy , which produces by far
the simplest safety obligations. This conbns our second hypothesis: aggressive preprocessing
is absolutely necessary to yield reasonable results.

Let us now look more closely at the different simpfification stages. Breaking the large
original formulas into a large number of smaller but independent proof tasks (Tv,+) boosts the
relative performance considerably. However, due to the large absolute number of tasks, the

11

11 e-setheo03F I e-setheo-new Vampire6.0

95.5 178.1
8.5 9224.9

57.9 773.1
16.7 744.9
50.0 1316.5
99.9 240.5
95.0 14482.2
95.3 4183.7
90.2 3315.8
87.7 1359.9
99.3 187.5
84.9 10598.0
70.1 3806.2
58.9 1596.7
53.7 1286.7

100.0 12.7
~ 2 . 5 10239.6
69.8 3718.1
62.5 1455.5
66.7 736.7

100.0 12.7
100.0 1401.3
100.0 262.6
99.1 963.9
62.5 791.7
99.9 240.6
99.8 4952.1
99.8 793.5
99.6 3277.3
86.6 1449.9

100.0 12.0
100.0 1418.9
100.0 262.6
99.1 1048.8
00.01 108.01

TATP
Vampire5.O Otter

95.5 102.1 .83.6 870.;
8.5 8251.0 6.6 6534.;

47.4 645.5 35.7 16.(
16.7 723.6 16.7 847.5
48.1 1327.1 31.5 1537.7
99.8 152.4 99.5 714.2
93.5 14203.4 92.0 19310.5
94.3 4206.8 96.6 3014.;
91.3 1789.2 80.8 2160.1
87.1 1276.0 76.1 2051.t
99.3 132.6 97.1 621.4
83.2 10546.8 78.8 13461.t
65.0 3960.6 78.5 2729.2
58.9 1424.8 19.6 2002.2
51.2 1275.3 9.8 2036.2

100.0 1.7 100.0 20.7
S2.G’ 9z.io.2 85.7 7ya3.e
67.4 3561.1 64.0 3715.3
58.9 1389.8 26.8 1828.2
53.3 858.0 50.0 1007.7

100.0 1.7 100.0 20.2
99.0 785.1 95.7 2468.7
87.2 525.2 85.1 613.7
99.0 922.7 98.2 872.9
50.0 858.6 59.4 896.2
99.9 153.1 99.5 711.9
98.4 6000.1 95.5 13680.4
99.6 925.9 99.5 1427.8
99.6 1807.0 83.5 1682.8
86.0 1276.2 76.4 2078.3

100.0 1.6 100.0 19.7
99.0 782.5 95.7 2456.7
70.0 524.8 65.0 601.1
99.0 926.9 99.3 501.1
71.41 241.81100.01 69.7

% TAP % TAP simp.lpolic: -
70

7prop

L a 1

Lay

Lray.

T&,,

aria)
init
in-us,
symm

aria)
norm

init
in-us(
symm
norm
array
init
in-ust
symm

array I . . -
in-ust
symm

array
init
in-ust
symm
norm
array
init
in-use
symm

norm

inrt

norm

norm
array
init
in-use
symm
norm

1575.8
19.8

823.9
343.2

1629.3
1583.1
5918.0

13536.1
5139.0

11787.7

96.4
75.0
68.4
38.9
51.9
99.8
97.4
99.1
88.5
84.5
99.3
92.8
94.9
48.2
41.5

100.0
93.3
94.8
51.8
50.0

100.0
99.7

100.0
99.4
59.4
99.9
99.5
99.8
99.7
86.0

100.0
99.5

100.0
99.4

100.0

3iqTGF
73.4

2898.3
512.8
555.3

1224.2
217.C

8732.2
1733.5
3638.7
1572.0
157.5

5469.7
1008.3
1911.3
1478.2

10.4
.??SC).l
1023.1
1716.0
940.5

10.4
875.8
171.3
746.4
709.7
210.8

4574.9
889.2

3385.1
1351.3

9.9
875.2
170.7
760.0
26.2

llO*
164
19
18
54

457
i177
123
286
155
275
919
177
56
41
28

96.4 192.4
76.8 3000.8
57.9 610.8
50.0 387.7
51.9 1282.4
99.0 903.4
88.4 3969.4
59.3 819.1
93.4 1785.9
85.8 1422.1
99.3 278.2
94.7 4239.4
86.4 1854.0
66.1 1476.2
46.3 1361.2

100.0 16.2

Table 3: Proof results and times

94.5
13.1
44.4
8.3

51.9
94.2
91.7
96.4
90.6
73.5
76.4
73.0
77.4
51.8
41.5

100.0
3?.?
83.1
66.1

absolute number of failed tasks also increases. With each additional simplification step, the
percentage of solved proof obligations increases further. Interestingly, however, &,+ and Tmay
seem to have the biggest impact on performance. The reason seems to be that equality reasoning
on deeply nested terms and formula structures can then be avoided, albeit at the cost of the
substantial increase in the number of proof tasks. The results with the simplification strategy
Tmy*, which only contains the language-specific rules, also illustrates this behavior. The norm-
policy clearly produces the most difficult safety obligations, requiring essentially inductive and
higher-order reasoning. Here, all simplification steps are required to make the obligations go
through the first-order ATPs.

The results in Table 3 also indicate there is no single best theorem prover. Even variants of
the “same” prover can differ widely in their results. For some proof obligations, the choice of
the clausification module makes a big difference. The TPTP-converter implements a straightfor-

284.5
1759.E
612.2
266.1

1341.C
5925.C

20784.E
4100.2
2341.C
2552.5
4080.8

17472.2
2768.2
1944.4
1484.6

19.7
5285.C
2305.2
1500.4

12

15711 86.0 1306.8 72.6 2670.8

Fi,we 3: Distribution of easy (qWf < Is, white), medium (Tpm, < lOs, light grey), difficult
(Tpmf < 60s, dark grey) proofs, and failing proof tasks (black) for the different simplification
stages (prover: e-setheo-csp03F). N denotes the total number of proof tasks at each stage.

ward algorithm similar to the one described in [161. Flotter uses a highly elaborate conversion
algorithm which performs many simplifications and avoids exponential increase in the num-
ber of generated clauses. This effect is most visible on the unsimplified obligations (e.g., 70
under init), where Spass and e-setheo-csp03F-which both use the Flotter clausifier-perform
substantially better than the other provers.

Since our proof tasks are generated directly by a real application and are not hand-picked for
certain properties, many of them are (almost) trivial-even in the unsimplified case. Figure 3
shows the resources required for the proof tasks as a series of pie charts for the different simpli-
fication stages. All numbers are obtained with e-setheo-csp03F; the figures for the other provers
look similar. Overall, the charts reflect the expected behavior: with additional preprocessing
and simplification of the proof obligations, the number of easy proofs increases substantially
and the number or rmng proof tasks decieases siiaply b i n q.jproxiratdy 16% ta zero. R e
relative decrease of easy proo€s from %,* to T,, and 7& is a consequence of the large number
of easy proof tasks already discharged by the respective simplifications.

I I ...

4.3 Dficult Proof Tasks
Since all proof tasks are generated in a uniform manner through the application of a safety policy
by the VCG, it is obvious that many of the difficult proof tasks share some structural similarities.
We have identified three classes of hard examples; these classes are duectly addressed by the
rewrite rules of the policy-specific simplifications.

B1 A . . . A f3, where the
23, are variable disjoint. These obligations can be split up into n smaller proof obligations of the
form A + 23; and most theorem provers can then handle these smaller independent obligations
much more easily than the large original.

The second class contains formulas of the form s y m (r) + symm(diag-updates(r)). Here,
r is a matrix variable which is updated along its diagonal, and we need to show that r remains
symmetric after the updates. For a 2x2 matrix and two updates (i.e., roo = x and rll = y), we
obtain the following simplified version of an actual proof task:

Most safety obligations generated by the VCG are of the form A

Vi, j - (0 5 i, j 5 1 =+ sel(r, i, j) = sel(r, j , i)) +
(Vk,Z - (0 5 k,l 5 1 =+

se+d(upd(r , 1,L ?/I, 0, 0,4, k 1) = Sel(uPd(uPd(r, 171, Y), o,o, 4 7 1 , W).
This pushes the provers to their limits+-setheo cannot prove this while Spass succeeds here
but fails if the dimensions are increased to 3x3, or if three updates are made. In our examples,

13

matrix dimensions up to 6x6 with 36 updates occur, yielding large proof obligations of this

Another class of seemingly trivial but hard examples, which frequently shows up in the init-
policy, results from the expansion of deeply nested seZ/upd-terms. These problems have the
form

specific form which are, qgQrovable by curre2t further preprocessing. .- -

 vi,^'. 0 5 i < n A 0 5 j 5 n + (2 # 0 A j # 0 A . . .i # n A j # n + false)

and soon become intractable for the clausifier, even for small n (n = 2 or n = 3), although the
proof would be easy after a successful clausification.

simp. policy
70 array

inir
in use

T v , ~ array
init
in-use

7prop array
init
in-use

ZVd array
inir

4.4 Policy-Specific Domain Theories

The domain theory described in Section 3.3 and used in the experiments summarized in Table 3
contains all axioms required to prove any of the obligations; in particular, it also contains axioms
which are specific to the symbols used only in one policy and which should thus not be required
for any obligation from the other policies. However. experience shows that the ATPs have
problems detecting such redundant axioms [8, 25,281.

e-setheo03F

% Tproof T,, % Tpmf Tmean

96.4 61.5 0.56 96.4 131.2 1.19
86.6 868.8 5.30 76.8 928.9 5.66
57.9 32.0 1.68 57.9 62.4 3.28
99.9 633.2 0.43 99.0 782.1 0.54
98.6 7259.1 2.28 88.4 2155.1 0.68
98.0 686.5 0.61 59.3 456.6 0.41
99.3 125.6 0.46 99.3 156.8 0.57
95.2 5467.7 5.95 94.7 1274.4 1.39
87.0 179.0 1.01 86.4 283.4 1.60

100.0 12.7 0.45 100.0 16.2 0.58
94.7 5240.3 6.63 94.6 1342.1 1.70

reduced theory full theory

)in-use] 86.6) 24.81 1.42) 86.0 281.71 1.64

Tmy-

Tplicy

87.21 39.51 0.841 87.21 42.91 0.91
99.9) 23.01 0.02) 99.9) 32.5) 0.02

init 100.0 354.5 0.61 100.0 527.6 0.91
in-use 100.0 31.4 0.67 100.0 203.4 4.33
array 99.9 616.3 0.42 99.9 795.4 0.55
init 99.8 2353.4 0.62 99.7 2807.3 0.73
in-use 99.8 1485.6 0.48, 99.8 2015.9 0.65
array 100.0 11.7 0.45 100.0 15.0 0.58
init 100.0 363.3 0.62 100.0 529.2 0.91
in-use 100.0 19.4 0.97 100.0 187.9 9.39

98.2 1923.4 0.50 98.4 2200.5
0.021 99.61 8i:Ll 1"

99.61 6511 100.0 0.05 100.0 0.06
99.3 443.2 0.76 99.0 420.7 0.72
70.0 39.0 1.95 70.0 42.5 2.13

Table 4: Proof results and times-policy-specific domain theories

In order to evaluate the effect of redundant axioms in our case, we used a reduced domain
theory for the array, init, and in-use safety polices and then re-ran e-setheo-csp03F and Vam-
pire5.0. The reduced domain theory uses the same dynamic axiom generator as the full theory
but omits seven axioms that specify the behavior of matrix operations (Le., addition, subtrac-
tion, multiplication, transposition, and inversion) which do not occur in the obligations resulting
from the above policies. The reduced set thus contains 37 axioms and 17 symbols.

14

Table 4 summarizes this experiment and gives the results and times for both the reduced
.and the original full domain theory. Note that Tpnof only includes the CPU times for success-
ful proof attempts; T- is the average CPU time for these cases. There is no uniform trend,
however4epending on the ATP, the applied simplifications, and the safety policy, either more
or less tasks are proven while the proofs can become faster or slower. This non-uniform be-
havior is likely to be a consequence of the internal architecture of the provers. Both e-setheo
and Vampire implement multiple search strategies and then derive a schedule from the proof
task. However, e-setheo’s scheduling algorithm seems to be more sensitive to the changes than
Vampire’s. e-setheo never fails to prove proof tasks by switching to the reduced domain theory
and sometimes finds a substantial number of additional proofs, in pdcular for unsimplified or
almost unshplified tasks. The average proof times are usually slightly better but they can vary
widely-up to one order of magnitude in both directions (e.g., init with T,, and in-use with
T’&,,-+). In contrast, the variation in Vampire’s results and proof times is a lot smaller and appears
to be statistically insignificant.

_ _ _ _ _

5 PrcmfChecking

For certification purposes, explicit evidence must be provided that none of the individual tool
components can yield incorrect results. The VCG is designed so that it can be manually in-
spected for correctness and, similarly, the rewrite rules used for simplification can be inspected
and even individually proven correct. However, the state-of-the-art high performance ATPs in
our syskm we coinpkatcd dz=di , e!&mak st‘?lc@xes, m-d nptimi7d implementations
to increase their deductive power and obtain fast results. This makes a formal verification of
their correctness impossible in practice. Although they have been extensively validated by the
theorem proving community (using the TPTP benchmark library), the ATPs remain the weakest
link in the certification chain.

As an alternative to formally verifying the ATPs, they can be extended to generate suffi-
ciently detailed proofs which can then be independently checked by a small and thus verifiable
algorithm. This is the same approach we have taken in extending the synthesis system to gen-
erate annotated code, rather than directly venfying the synthesizer. However, although this iaea
is very simple in theory, there are currently (as of 2004) almost no proof checkers for high-
performance ATPs. This has a number of practical reasons:

0 Many ATPs simply do not generate the required detailed proofs, mainly due to implemen-
tation effort and run-time requirements.

0 On-going changes in the ATP require frequent updates and re-vexilkation of the proof
checker.

0 Most ATPs contain a large number of high-level inference rules (such as splitting) which
cannot easily be expanded into sequences of low-level inferences, making the proof
checker more complicated and thus hard to verify.

0 Almost all ATPs work on problems in CNF, so the proof checking can only be done on
that level, and not on the FOL level. Since clausification is often a large part of a proof,
this reduces the confidence that proof checking can bring.

15

The notable exception is the IVY system [18] that we used in our experiments. IVY com-
bines a clausifier and the Otter theorem prover with a proof checker. Because IVY is imple-
mented within the ACL2 logic [15], both the clausifier and the proof checker have been verified.
IVY thus provides the same functionality as a verified prover for first-order logic, but achieves
relatively good performance by using Otter to find the proofs. However, the formal verification
of the IVY clausifier and proof checker are based up finite domains [181 but since the imple-
mentation of IVY does not actually rely on the finiteness, the system can be used for arbitrary
proof tasks.

Another limitation of IVY is shared by all existing clausification algorithms. Clausifiers
usually take a first-order formula apart and reorganize the pieces using non-logical graph-based
techniques. Thus, establishing traceability between the clauses (or literals) and the positions
they had in the original formula would require substantial effort and has not yet been attempted
in practical implementations. While this restriction makes it impossible to translate the clausal
proof back into a first-order representation, it also has a negative influence on the prover’s
behavior. Many ATPs can be sped up considerably if it is known which parts of the formula
arc axioms and which belong to the conjecture. This distinchon allows the prover to apply goal-
oriented rules. Our application naturally provides this information, but this is ignored by IVY.
Thus, the Otter prover used within IVY can only use Otter’s auto-mode which is rather weak
for our proof obligations. Experiments also revealed that IVY has problems in handling the full
axiom set. With the policy-specific domain theory of Section 4.4, we obtained the following
results for the fully simplified tasks: 100% in 34.8s for the array property, 89.2% in 4929.2s for
init, and 65.0% in 657.5s for in-use.

, .

6 Traceability

The successful application of an automated theorem prover to verification and, in particular, to
certification problems such as we have described here, places more requirements on an ATP
than just raw deductive power. Since the aim of certification is to provide explicit evidence that
software meets a specified standard of safety, it is important that domain experts can assess the
evidence for successful checks of the safety properties and any places where it is violated.

Safety checks are typically carried out during code reviews [22], where reviewers look in
detail at each line of the code and check the individual safety properties statement by statement.
The successful outcome of a code review, therefore, consists of the code, where each statement
is labelled with either “complies with property P’, or with information about the violation. This
requires two things: (i) tracing information which links the safety obligations (or their proofs)
to specific lines of code in the program being certified, and (ii) a summary which relates this
detailed information back to the specification and the safety policy, while drawing attention to
specific areas of concern.

Existing techniques for addressing the tracing problem [131, however, need to be extended
for our purposes. The required information about code locations needs to be threaded through
all stages of our certification architecture (cf. Figure 1). Only then can the tracing information
be obtained and displayed in the appropriate way. Even if we just want to know if a certain line
in the code fulfills a safety property, the location information still needs to be threaded through
the VCG and the simplifier.

To get more detailed information, however, the tracing has to be threaded through the ATP

16

... . - 3 .. . _

Figure 4: Comparison of proof results and certification results

and into the proof it generates. For example, the analysis needs to reveal which other lines of
code are actually required to satisfy a property. For variable initialization safety this can mean
computing on which line the variable that is accessed in the current statement was initialized.
The extraction of this information requires knowledge of which parts of the formula contributed
to the proof, as well as their location information. This problem is aggravated by the fact that
zest thmrem proveE work c l r ~ l clausal nnm.al form: which usually looses the important location
information.

In general, useful information extracted from an ATP can be used for purposes of auto-
generating documentation. In [6], we describe a safety documentation tool, which generates
a natural language description explaining the safety of a program, by converting the VCs into
text. This could be extended by carrying out some symbolic evaluation from the simplifier as
an intermediate step to using the full proofs.

-

7 Conclusions

We have described a system for the automated certification of safety properties of NASA state
estimation and data analysis software. The system uses a generic VCG together with explicit
safety policies to generate policy-specific safety obligations which are then automatically pro-
cessed by a first-order ATP. We have evaluated several state-of-the-art ATPs on more than 25,000
proof tasks generated by our system. With “out-of-the-box” provers, only about two-thirds of
the tasks could be proven but after aggressive simplification, most of the provers could solve
almost all emerging tasks. In order tc see the effects of simplification more clearly, we experi-
mented with several preprocessing stages. Figure 4 shows (on the left) the overaU results for the
different stages and provers.

However, the percentage of solved proof tasks is a very ATP-centric metric; it is also some-
what artificial because it can easily be boosted by splitting the original obligations into a larger
number of small proof tasks (cf. the results for 7s and ‘&v,+). An empirically more meaningful
metric for the success of this ATP-application is the percentage of solved certification tasks,
i.e., the relative number of cases in which the ATP solves all safety obligations resulting from

17

the application of a safety policy to an individual program. Figure 4 shows this metric (on the

dramatic change in the interpretation of the same results. The two major differences are (i) the
numbers go down and (ii) the variation between the provers becomes larger. Both differences
result from a few hard proof tasks which are distributed evenly over the different certification
tasks. Consequently, empirical success is a lot harder to come by if it is defined in terms of the
application rather than in terms of the TPTP corpus. However, as our experiments show it is
clearly not impossible.

It is well-known that, in contrast to traditional mathematics, software verification hinges on
large numbers of mathematically shallow (in terms of the concepts involved) but structurally
complex proof tasks, yet current provers are not well suited to this. Since the propositional
structure of a formula is of great importance, we believe that clausification algorithms should
integrate more simplification and split goal tasks into independent subtasks. Likewise, certain
application-specific constructs (e.g., seUupd) can easily lead to proof tasks which cannot be han-
dled by current ATPs. The reason is that simple manipulations on deep terms, when combined
with equatlonal reasomng, can result in a nuge search space.

Our certification approach relies on proof checking to ensure that the proofs are correct.
However, the ATPs fare less well when assessed in these terms and more research efforts should
go into the development of proof checkers for high-performance provers. Moreover, it is very
difficult to get useful information from the ATPs, which can be used as a basis for documenta-
tion. Since we believe that software certification should be one of the main application areas for
automated theorem proving, this is clearly another area in need of further work.

With our approach to certification of auto-generated code, we are able to automatically pro-
duce safety certificates for code of considerable length and structural complexity. By combining
rewriting with state-of-the-art automated theorem proving, we obtain a safety certification tool
which compares favorably with tools based on static analysis (see [4] for a comparison). Our
current efforts focus on extending the certification system in a number of areas. One aim is
to develop a certificate management system, along the lines of the Programatica project [23].
We also plan to combine our work on certification with automated safety and design document
generation [6] tools that we are developing. Finally, we continue to integrate additional safety
properties.

right) for the different simplification stagesand provers. This change in perspective leads to a _, L _.-

References

[l] A. Appel, N. Michael, A. Stump, and R. Virga. “A Trustworthy Proof Checker”. JAR,
31(3-4):191-229, 2003.

[2] W. Bibel and P. H. Schmitt, (eds.). Automated Deduction - A Basis for Applications.
Kluwer, 1998.

[3] E. Denney and B. Fischer. “Correctness of Source-Level Safety Policies”. In Proc. FM
2003: Formal Methods, LNCS 2805, pp. 894-913. Springer, 2003.

[4] E. Denney, B. Fischer, and J. Schumann. “Adding Assurance to Automatically Generated
Code”. In Proc. 8th IEEE Intl. Sympl. High Assurance System Engineering, pp. 297-299.
IEEE Comp. SOC. Press, 2004.

18

. . .
_ -

[5] E. Denney, B. Fischer, and J. Schwann. Using Automated Theorem Provers to Cert@
- . ,. r. Auto-Generated Aerospace Sohare, 2004. In Proc. JJCAR ’04. ToLappear- .^*. . - - . .. -

[6] E. Denney and R. P. Venkatesan. “A generic software safety document generator”. In Proc.
10th AMAST. To appear, 2004.

[7] B. Fischer, A. Hajian, K. Knuth, and J. Schumann. Automatic Derivation of Statistical Data
Analysis Algorithms: Planetary Nebulae and Beyond. In Proc. 23rd MaxEnt. To appear,
2004. http://ase.arc.nasa.gov/people/fischer/.

[8] B. Fischer. Deduction-Based Sofhvare Component Retrieval. PhD thesis, U. Passau, Ger-
many,2001. http://elib.ub.uni-passau.de/opus/volltexte/2002/23/.

[9] C. Flanagan and K. R. M. Leino. “Houdini, an Annotation Assistant for ESC/Java”. In
Proc. FME 2001.- F o n d Methods for Increasing Sofhvare Productivity, LNCS 2021, pp.
500-517. Springer, 2001.

[lo] B. Fischer and J. Schumann. “Applying AutoBayes to the Analysis of Planetary Nebulae
Images”. In Proc. 18th ASE, pp. 337-342. IEEE Comp. SOC. Press, 2003.

[l l] B. Fischer and J. Schumann. “AutoBayes: A System for Generating Data Analysis Pro-
grams from Statistical Models”. J. Functional Programming, 13(3):483-508, 2003.

[12] B. Fischer, J. Schumann, and G. Snelting. “Deduction-Based Software Component Re-
m e v u . Voiume TZI of Eibel and Schmili 121, pp. 265-292. 1998.

[13] R. Fraer. ‘Tracing the Origins of Verification Conditions”. In Proc. 5th AUAST, pp.
241-255,1996.

[14] P. Homeier and D. Martin. “Trustworthy Tools for Trustworthy Programs: A Verified
Verification Condition Generator”. In Proc. TPH0L.S 94, pp. 269-284. Springer, 1994.

[lS] M. Kaufmann and J S. Moore. “An Industrial Strength Theorem Prover for a Logic Based
on Common Lisp”. Sofhvare Engineering, 23(4):203-213, 1997.

[16] D. W. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland, 1978.

[171 J. McCarthy. “Towards a Mathematical Science of Computation”. In Proc. IFZP Congress
62, pp. 21-28. North-Holland, 1962.

[18] W. McCune and 0. Shumsky. “System description: IVY”. In Proc. 17th CADE, LNAI
1831, pp. 401405. Springer, 2000.

[19] W. McCune and L. Wos. “Otter-The CADE-13 Competition Incarnations”. JAR,
18(2):211-220, April 1997.

[20] M. Moser, 0. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann. and K. May. “The
Model Elimination Provers SETHEO and E-SETHEO”. JAR, 18237-246, 1997.

[21] G. C. Necula. “Proof-Canying Code”. In Proc. 24th POPL, pp. 106-19. ACM Press,
1997.

19

[22] S. Nelson and J. Schumann. “What makes a Code Review Trustworthy?’. In Proc. 37th
Annual Hawaii International Conference on System Sciences. IEEE, 2004.

[23] The Programatica Team. “Programatica Tools for Certifiable, Auditable Development of
High-assurance Systems in Haskell”. In Proc. High ConJidence SofhYare and Systems Con$,
Baltimore, MD, April 2003.

[24] W. Reif. “The KN Approach to Software Verification”. In KORSO: Methods, Languages
and Tools for the Construction of Correct Software, W C S 1009, pp. 339-370. Springer,
1995.

[25] W. Reif and G. Schellhorn. “Theorem Proving in Large Theories”. Volume IlI of Bibel
and Schmitt [2], pp. 265-292. 1998.

[25] W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured SpeciJ5cation.s and Interac-
tive Proofs with K N . Volume II of Bibel and Schmitt [2], pp. 225-241, 1998.

[27] A. Riazanov and A. Voronkov. “The Design and Implementation of Vampire”. A2 Com-
munications, 15(2-3) :9 1-1 10, 2002.

[28] J. Schumann. Automated Theorem Proving in SofhYare Engineering. Springer, 2001.

[29] G. Sutcliffe and C. Suttner. CASC Home Page. h t t p : //w. t p t p . org/CASC.

[30] G. Sutcliffe and C. Suttner. TPTP Home Page. h t t p : //www. t p t p . org.

[31] C. Weidenbach. SPASS Home Page. h t t p : / /spass .mpi-sb.mpg.de.

[32] C. Weidenbach, B. Gaede, and G. Rock. “Spass and Flotter version 0.42”. In Proc.
13th CADE, LNAI 1104, pp. 141-145. Springer, 1996.

[33] M. Whalen, J. Schumann, and B. Fischer. “AutoBayes/CC - Combining Program Syn-
thesis with Automatic Code Certification (System Description)”. In Proc. 18th CADE, LNAI
2392, pp. 290-294. Springer, 2002.

[34] M. Whalen, J. Schumann, and B. Fischer. “Synthesizing Certified Code”. In Proc. FME
2002: Formal Methods-Getting IT Right, LNCS 2391, pp. 43 1-450. Springer, 2002.

[35] J. Whittle and J. Schumann. Automating the Implementation of Kalman Filter Algorithms,
2004. In review.

20

